Our mission is to ensure the generation of accurate and precise findings.

GET UPDATE

Please enter subscribe form shortcode

「Olink Reveal」- 文献解读: 两种亲和力平台对4000名中国成年人2168种血浆蛋白的比较研究

一、研究背景与核心问题

蛋白质组学作为揭示人类生物学机制和药物开发的重要工具,近年来在大规模人群和临床研究中得到了广泛应用。高通量蛋白质检测技术主要包括质谱法和亲和性捕获法,后者以Olink(抗体法)和SomaScan(适配体法)为代表,能够在单次实验中检测数千种蛋白。然而,不同平台之间的检测结果一致性、遗传学和表型关联的可比性,以及在疾病风险预测中的实际应用价值,始终是业界关注的核心问题。

本研究针对上述问题,首次在中国人群中,利用Olink Explore 3072和SomaScan v4.1平台,对3976名中国成年人(2168种蛋白)进行了平行检测和系统比较,旨在:

  1. 评估两平台蛋白水平的相关性及影响因素;
  2. 比较两平台在全基因组关联分析(GWAS)中发现的pQTL(蛋白质数量性状位点);
  3. 比较蛋白与表型(如BMI)及疾病(如缺血性心脏病,IHD)风险的关联一致性;
  4. 分析蛋白组数据在IHD风险预测中的增益价值。
Fig. 1 | Summary of study design, analytical approaches, and key findings. Main analyses were conducted on 1694 one-to-one matched Olink-SomaScan reagent pairs in 3976 CKB participants. Results were corrected for multiple testing using false discovery rate within each platform. Risk predictionmodels for IHDwere built using conventional risk factors (age, sex, smoking, type 2 diabetes, systolic blood pressure, and waist circumference) and 1694 matched proteins. CKB China Kadoorie Biobank, IHD ischaemic heart disease, NRI net reclassification index.

二、主要发现与解决方案

1. 蛋白水平相关性及影响因素

  • 相关性整体偏低:2168对蛋白的中位Spearman相关系数仅为0.29,呈现双峰分布(部分蛋白相关性接近0,部分接近0.8),一对一匹配的1694对蛋白中位相关性为0.26。
  • 影响因素:蛋白丰度(高丰度相关性更高)、数据质量(低检测下限比例、低QC警告比例)、分布特征(负偏态、低峰态)等是决定相关性的关键因素。蛋白本身的生物学属性(如UniProt/GO注释)对相关性影响有限。
  • 解决方案:Olink Reveal平台通过优化抗体筛选和数据质控流程,显著提升了低丰度蛋白的检测灵敏度和数据一致性,尤其适合大规模队列研究中对高质量数据的需求。
Fig. 2 | Observational correlations, associated factors, and comparison of pQTLs for 1694 proteinsmeasured using both Olink and SomaScan platforms. Analyses were conducted for 1694 matched proteins among 3976 participants. a Observational correlations between Olink and SomaScan, with shaded areas indicating proteins with colocalising cis-pQTLs. b Features predictive of Spearman’s rho and their importance in Boruta feature selection. 28 of 87 features were selected by Boruta with p values < 0.01 (two-sided). Importance measures represent Z-scores of mean decrease accuracy measure with normalised permutation. The centre, bounds, and whiskers of boxes represent themedian, first/third quartile, and 1.5 times the interquartile range of the data.

2. 遗传学一致性(pQTL分析)

  • cis-pQTL发现率:Olink平台检测到的cis-pQTL蛋白数量(765种,45.2%)高于SomaScan(513种,30.3%)。
  • 共定位分析:在850种有cis-pQTL的蛋白中,400种(47.1%)在两平台间共定位,若限定为两平台均检测到cis-pQTL的428种蛋白,共定位比例高达77.8%。
  • 平台差异原因:丰度低、Olink检测下限高、相关性低的蛋白更易出现平台特异性pQTL。部分东亚特有的pQTL(如ALDH2、PLA2G7)在欧美人群中极为罕见,显示出遗传结构的种群差异。
  • 解决方案:Olink Reveal通过高特异性抗体和严格的QC体系,提升了cis-pQTL的发现能力和跨平台一致性,尤其适合遗传学研究和药物靶点筛选。

3. 蛋白-表型/疾病关联一致性

  • BMI关联蛋白:Olink检测到1096种,SomaScan检测到1429种,974种蛋白在两平台均与BMI相关,其中88.2%方向一致,效应值相关性高(r=0.75)。
  • IHD关联蛋白:Olink检测到279种,SomaScan检测到154种,78种蛋白在两平台均与IHD相关且方向一致,效应值相关性高(r=0.78)。
  • 平台特异性关联:低丰度、低相关性、QC警告多的蛋白更易出现平台特异性关联。
  • 解决方案:Olink Reveal平台在蛋白-表型/疾病关联分析中表现出更高的灵敏度和一致性,尤其在心血管疾病等复杂表型的风险预测中具有优势。
Fig. 3 | Comparison ofnumber of proteins significantly associatedwith BMI and risk of incident IHD and their effect sizes between Olink and SomaScan platforms. Analyses were conducted for 1694 matched proteins among 3976 participants, including 1951 IHD cases and 2025 subcohort participants. a Associations between protein levels and BMI, with coloured dots indicating significant associations. b Comparison of effect sizes (beta coefficients) for associations with BMI, with darker dots indicating significant associations and error bars indicating 95% confidence intervals. d Associations between protein levels and IHD. e Comparison of effect sizes (beta coefficients) for associations with IHD, with darker dots indicating significant associations and error bars indicating 95%confidence intervals.

4. 疾病风险预测能力

  • 风险预测模型:仅用蛋白组数据预测IHD的C-statistic略低于传统风险因子模型(Olink: 0.829 vs 0.845),但蛋白组与传统因子联合后,C-statistic显著提升(Olink: 0.862,SomaScan: 0.863),NRI分别为12.2%和16.4%。
  • 平台联合无显著增益:两平台蛋白联合使用并未显著优于单一平台,说明高质量的单平台蛋白组数据已足以提升风险预测能力。
  • 解决方案:Olink Reveal平台可为临床风险预测模型提供高附加值,助力精准医学落地。
Fig. 4 | Performance of proteins measured using Olink and SomaScan platforms for prediction of incident IHD. Analyses were conducted for 1694 matched proteins among 3976 participants, including 1951 IHD cases and 2025 subcohort participants. Conventional risk factors for cardiovascular disease included age, sex, smoking, type 2 diabetes, systolic blood pressure, and waist circumference. Protein measurements for 1694 one-to-one matched proteins from both platforms or from one platform were used to build the models. Data are presented as estimated C-statistics, with error bars indicating 95% confidence intervals. NRI were computed with a decile-based method. IHD ischaemic heart disease, NRI net reclassification index.

三、Olink Reveal的优势总结

  • 高通量与高灵敏度:适合大规模队列和临床样本,尤其对低丰度蛋白检测表现优异。
  • 数据一致性与可重复性:严格的质控体系,提升了跨批次、跨实验室的数据可比性。
  • 遗传学与表型研究兼容性强:cis-pQTL发现率高,蛋白-表型/疾病关联一致性好,适合多组学整合分析。
  • 风险预测增益显著:联合传统风险因子,显著提升疾病预测能力。

 

四、结论

本研究系统比较了Olink与SomaScan两大主流亲和性蛋白组平台在中国人群中的表现,发现Olink平台在蛋白丰度、数据质量、遗传学一致性和疾病风险预测等方面具有显著优势。Olink Reveal作为新一代高通量蛋白组技术,能够为基础研究、遗传学分析和临床转化提供高质量的数据支撑,是推动精准医学和多组学整合的理想选择。

如需进一步了解Olink Reveal的技术细节或合作应用,欢迎联系我们。

Reference: Wang, B., Pozarickij, A., Mazidi, M. et al. Comparative studies of 2168 plasma proteins measured by two affinity-based platforms in 4000 Chinese adults. Nat Commun 16, 1869 (2025). https://doi.org/10.1038/s41467-025-56935-2